Abstract

PurposeThe standard approach to Echo-Planar Imaging (EPI) is to use trapezoidal readout (RO) gradients with blipped phase-encoding (PE) gradients. Sinusoidal RO gradients with constant PE gradients can reduce acoustic noise. However, this sequence, originally introduced by Mansfield et al., constitutes major challenges for Cartesian parallel imaging techniques. In this study two alternatives to reconstruct a non-blipped EPI are proposed and evaluated. Theory and methodsThe first method separates the acquired k-space data into odd and even echoes and applies Cartesian GRAPPA separately to each partial data set. Afterwards, the resulting reconstructed data sets for each echo are summed in image space. In the second method, an iterative parallel-imaging algorithm is used to reconstruct images from the highly non-Cartesian data samples. ResultsCompared to blipped-EPI, the first method reduces image SNR depending on the acceleration factor between 11% and 60%. For an acceleration factor of 3 folding artefacts appear. The second method produces slight fold-over artefacts although image SNR is on the same level as the blipped approach. ConclusionIn this study, we have introduced two new approaches to EPI that allow the use of Cartesian parallel imaging in conjunction with continuous data sampling. In addition to providing a reduction in acoustic noise compared to the standard blipped PE EPI sequence, the proposed techniques improve sampling efficiency, resulting in a reduction of the echo-spacing. Of the two methods, the second approach, based on an iterative image reconstruction, provides higher SNR, but requires a longer reconstruction time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.