Abstract

PurposeTransaxial CT imaging is the main clinical imaging modality for the assessment of COVID-induced lung damage. However, this type of data does not quantify the functional properties of the lung. The objective is to provide non-invasive personalized cartographies of lung stiffness for long-COVID patients using MR elastography (MRE) and follow-up the evolution of this quantitative mapping over time. MethodsSeven healthy and seven long-COVID participants underwent CT and MRE imaging at total lung capacity. After CT test, a senior radiologist visually analyzed the lung structure. Less than one month later, a first MRI (1.5 T, GRE sequence) lung density test followed by a first MRE (SE-EPI sequence) test were performed. Gadolinium-doped water phantom and a pneumatic driver (vibration frequency: 50 Hz), placed on the sternum, were used for MRI and MRE tests, respectively. Personalized cartographies of the stiffness were obtained, by two medical imaging engineers, using a specific post processing (MMDI algorithm). The monitoring (lung density, stiffness) was carried out no later than 11 months for each COVID patient. Wilcoxon's tests and an intra-class correlation coefficient (ICC) were used for statistical analysis. ResultsThe density for long-COVID patients was significantly (P = 0.047) greater (170 kg.m−3) compared to healthy (125 kg.m−3) subjects. After the first MRE test, the stiffness measured for the healthy subjects was in the same range (median value (interquartile range, IQR): 0.93 (0.09) kPa), while the long-COVID patients showed a larger stiffness range (from 1.39 kPa to 2.05 kPa). After a minimum delay of 5 months, the second MRE test showed a decrease of stiffness (from 22 % to 40 %) for every long-COVID patient. The inter-operator agreement was excellent (intra-class correlation coefficient: 0.93 [0.78–0.97]). ConclusionThe MRE test is sensitive enough to monitor disease-induced change in lung stiffness (increase with COVID symptoms and decrease with recovery). This non-invasive modality could yield complementary information as a new imaging biomarker to follow up long-COVID patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.