Abstract

AbstractThe synthesis of large‐scale integrated water networks is typically formulated as nonconvex mixed‐integer quadratic constrained programming (MIQCP) or QCP problems. With the complexity arising from bilinear terms in modeling mass flows of contaminants and binary variables representing the presence of units or streams, numerous local optima exist, thus presenting a significant optimization challenge. This study introduces a deterministic global optimization algorithm based on mixed‐integer programming (MIP) to tackle such problems. The approach involves dynamically strengthening the relaxed problems to converge towards the original problems. A simultaneous partition strategy is proposed combining locally uniform division with dynamic partitioned variables choosing. Furthermore, several adaptive bound contraction schemes are introduced to efficiently manage the size of the relaxed problems, assisting in accelerating the solution process. The algorithm's effectiveness and robustness are demonstrated with a large test set, showing superior performance compared to commercial solvers specifically on MIQCP problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.