Abstract

Charge trapping in chemically vapor-deposited Si3N4 thin films of metal-nitride-oxide- semiconductor (MNOS) structures has been studied using the internal photoelectric-effect technique in combination with high-frequency capacitance-voltage measurements. The trapped charge density in the Si3N4 film was investigated as a function of the experimental parameters of the internal photoelectric-effect technique and the oxide thickness (300–20 Å) of the MNOS structure. The optimum trapped electron density in the Si3N4 film was measured to be 1.5×1018/ cm3 using 4.14-eV photon energy, 3.0-mW/cm2 light intensity, and −20-V applied gate voltage bias for the MNOS structures whose oxide thicknesses were greater than 70 Å. The photoinjection of holes from Si into Si3N4 was inhibited in thick-oxide (300–43 Å) MNOS structures due to the large barrier height at the Si-SiO2 interface. This eliminated simultaneous trapping of holes and electrons in the Si3N4 film. As the oxide thickness of the MNOS structure was reduced below the critical thickness of 43 Å, the photoinjection of holes from Si into Si3N4 was enhanced substantially with subsequent dominant hole trapping in the Si3N4 film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call