Abstract

We have studied the effects of nitrogen substitutional doping on the transport properties of single-wall carbon nanotube (8, 0) using density functional theory and non-equilibrium Green's functions. The results reveal that the nanotube changes from the semiconducting to the quasi-metallic state because of the dopants, and their structures strongly dominate their electrical properties. Our calculations indicate that transport properties of the doped nanotubes are sensitive not only to the concentration of nitrogen atoms but also to their distribution. The doping effects on the electronic transport of the carbon nanotube are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.