Abstract
The application of black phosphorus in optoelectronic devices is hindered because of its inherent band gap characteristics. In the paper, black phosphorus was prepared by high-energy ball milling, and its related structure and properties were characterized. At the same time, the luminescence mechanism of black phosphorus was explored, and the effect of ultrasonic time on the structure and optical properties of black phosphorus was studied. The luminescence peak of black phosphorus can be modulated to the visible light range after adding polyethylene glycol, and the luminescence of black phosphorus is closely related to the P (020) and P (021). It was found that the luminescence intensity of alcoholized black phosphorus decreases with the increase of ultrasonic time. When the ultrasonic time is 15min, the luminescence intensity of alcoholized black phosphorus decreases greatly, this is because that the content of P (020) in black phosphorus decreases with the increase of ultrasonic time, resulting in the decrease of luminescence intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.