Abstract
Cocktails of neuroprotectants acting at different parts of the ischemic injury cascade may have advantages over single agents. This study investigated, singly and in combination, the neuroprotective efficacy of an energy substrate (3.5 mM fructose 1,6-bisphosphate, FBP), an antagonist of NMDA receptors (1 and 10 microM MK-801), a free-radical scavenger (100 microM ascorbate), an adenosine A1 receptor agonist (10 microM 2-chloroadenosine), and an inhibitor of neurotransmission (2% isoflurane). These agents were evaluated for their ability to prevent loss and morphologic damage of CA1 neurons in rat hippocampal slices when these agents were administered during 30 minutes in vitro ischemia (combined oxygen/glucose deprivation at 37 degrees C) followed by 5 hours of recovery. Ten microM MK-801, alone or in combination with the other compounds, prevented loss of CA1 neurons and preserved their histologic appearance. Isoflurane, which prevents glutamate receptor-dependent cell death in this model, was also protective. Protection against neuron loss was also found when a subtherapeutic concentration of MK-801 (1 microM) was combined with 2-chloroadenosine (which indirectly causes NMDA receptor suppression), but not FBP or ascorbate. The authors conclude that in this model, the strategy of antagonizing NMDA receptors appears more protective than fructose-1,6-bisphosphate, 2-chloroadenosine or ascorbate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.