Abstract
We investigated the effects of model size and particle size on the simulated macroscopic mechanical properties, uniaxial compressive strength, Young’s modulus, and flexural strength of sea-ice samples, using the discrete-element method (DEM) with a bonded-particle model. Many different samples with a hexagonal-close-packing pattern and a unique particle size were considered, and several ratios of particle size to sample dimension (D/L) were studied for each sample. The macroscopic mechanical properties simulated by the DEM decrease monotonously with an increase in D/L. For different samples with different particle sizes, the macroscopic mechanical properties will be identical when D/L is constant. The quantitative relationships between macroscopic mechanical properties and ratio of particle size to sample size are important aspects in engineering applications of the DEM method. The results provide guidance on the choice of a particle size in the DEM simulation for numerical samples with a hexagonal-close-packing pattern.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have