Abstract
Fibre-reinforced polymer (FRP) composites have been widely used in different engineering sectors due to their excellent physical and mechanical properties. Therefore, fast, convenient and accurate prediction tools for both macroscopic mechanical properties and failure of the composites are highly demanded by industry and interested by academia. In this study, two back-propagation deep neural network (DNN) models are developed. The first model is a regression model for predicting macroscopic transverse mechanical properties of FRP laminae, which is based on a data set generated by Discrete Element Method (DEM) simulations of 2000 Representative Volume Element (RVE) with 200 different sets of fibre volume fractions and fibre radii. The second model, which is a classification model based on the results of 1600 DEM simulations of RVEs with a fixed 45 % fibre volume fraction and 3.3μm fibre radius, is developed for predicting microscopic crack patterns of the FRP laminae. The results show that the two developed DNN models are able to predict both the macroscopic transverse mechanical properties and the microscopic cracks of the RVE accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.