Abstract

Newborn rats were treated at different stages of their development with low doses of methylazoxymethanol acetate. The postnatal increase of the DNA content of the cerebrum did not differ from that of controls. In the cerebellum, the DNA content was transitorily reduced, but later, the external granular layer became thicker and DNA deposition increased in comparison with controls; finally, the cerebellar DNA returned to a normal value. Morphological abnormalities of the cerebellum, abnormal orientation of migrating cells, scattering of Purkinje cell bodies within the internal granule cells and specially striking abnormalities of the morphology and orientation of Purkinje cell dendrites were noted in rats treated with MAM from birth to day 3. The effects of the Purkinje cell morphogenesis persisted but were much less marked when MAM was given from 4 to 7 or from 8 to 11 days. Neonatal thyroid deficiency, as MAM-treatment between days 0 and 3, leads to an abnormal position of Purkinje cell bodies within the cerebellar cortex; it also leads to morphological abnormalities of their dendritic arborization which closely resemble those observed after MAM-treatment during the second postnatal week. It also alters the cell formation in the cerebellum. Thyroid deficiency probably exerts its effect on cell formation earlier than previous biochemical studied have shown. On another hand, the morphological abnormalities of Purkinje cell arborizations in the thyroid-deficient animals may be partly due to the perturbations of cell formation which persist later in the cerebellum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call