Abstract

Retinoid-related orphan receptor α (RORα) is a critical master transcription factor that governs postnatal cerebellar development. An RORα-deficient cerebellum has a persistent external granular layer (EGL), rudimentary Purkinje cell (PC) dendrites, grossly reduced numbers of immature parallel fiber (PF)-PC synapses, and multiple climbing fibers (CF) innervating PCs in mice after 3weeks of age when these features have disappeared in wild-type mice. Functionally, metabotropic glutamate receptor (mGluR)-mediated signaling in PCs is completely abrogated. Here we examined whether these defects could be corrected by lentivirally providing the RORα gene to 3-week-old PCs of RORα-deficient homozygous staggerer (sg/sg) mice. RORα expression in sg/sg PCs significantly increased the numbers of PF-PC synapses, spines on PC dendritic branchlets, and internal granule cells, concomitant with regression of the EGL, suggesting enhanced proliferation in the EGL and migration of post-mitotic progeny into the internal granular layer with augmented synaptogenesis between PFs and PC dendrites. However, the primary dendritic stems were only slightly extended, and mGluR signaling and the loss of redundant CF synapses in sg/sg PCs remained unrestored. These results suggest that the mitogenic and migratory potential of external granule cells in response to RORα was preserved in the >3-week-old sg/sg mouse cerebellum. Moreover, sg/sg PCs sprouted spines and formed synapses with PFs. However, lengthening of the primary dendritic stems, establishment of mGluR signaling, and removal of CF synapses in sg/sg PCs were regressed by 3weeks of age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call