Abstract

Proenkephalin mRNA and peptide products were examined in developing cells of the postnatal rat cerebellar cortex using in situ hybridization and immunocytochemistry. On day 7, proenkephalin mRNA was first detected as discrete cellular labeling in Golgi cells and as a diffuse hybridization signal over the Purkinje cell layer. On day 14, proenkephalin mRNA and peptide products primarily appeared in distinct subpopulations of Purkinje cells present in the posterior and lateral cerebellum. Similarly, in the external granular layer (EGL), enkephalin immunoreactivity was present only in the posterior and lateral portions of the cerebellum on day 14. However, proenkephalin mRNA was not detected in enkephalin-immunoreactive EGL cells. On day 21, the subset of Purkinje cells that expressed proenkephalin mRNA and peptides were distributed more uniformly throughout the cerebellum. On day 28, a few enkephalin-immunoreactive Purkinje cells were uniformly present throughout the cerebellum, but proenkephalin mRNA was not detected in most of these cells. The spatial gradients in proenkephalin mRNA expression evident in the Purkinje cells of younger rats were no longer present in 28-day-old rats. These findings are important, because endogenous opioids such as enkephalin have been previously shown to inhibit the growth of Purkinje cell dendrites and dendritic spines, and inhibit the rate of mitosis in EGL neuroblasts. Cells do not develop at uniform rates within the cerebellum. There are regional differences in the timing of the formation of the EGL, and in the morphogenesis of Purkinje cells. In conjunction with previous work, the present findings suggest that during development, the pattern of enkephalin immunoreactivity in Purkinje and EGL cells closely follows the spatial and temporal gradients of maturation in both these cell types. The emergence and disappearance of enkephalin immunoreactivity in Purkinje and EGL cells is spatially and temporally related, and coincides with proenkephalin mRNA expression in Purkinje cells. Thus, the transient and coordinated appearance of enkephalin in cerebellar Purkinje and EGL cells may contribute to regional differences in the rate of cerebellar maturation, and may help synchronize the developmental interactions between these two cell types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call