Abstract

Adult females of the mantis Tenodera angustipennis were presented with the "nonlocomotive" prey model, a static rectangle with two lines oscillating regularly at its sides, generated on a computer display. The models were varied in rectangle luminance (black, gray, and light gray), rectangle height (0.72, 3.6, and 18 mm), rectangle width (0.72, 3.6, and 18 mm), and angular velocity of oscillating lines (65°, 260°, and 1040°/s) to examine their effects on prey recognition. Before striking the model, the mantis sometimes showed peering movements that involved swaying its body from side to side. The black model of medium size (both height and width) elicited higher rates of fixation, peering, and strike responses than the large, small, or gray model. The model of medium angular velocity elicited a higher strike rate than that of large or small angular velocity, but angular velocity had little effect on fixation and peering. We conclude that mantises respond to a rectangle in deciding whether to fixate, and to both rectangle and lines in deciding whether to strike after fixation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call