Abstract

Drinking water treatment plants (DWTPs) in China that pioneered the biological activated carbon (BAC) process have reached 10 years of operation. There has been a renewed focus on biofiltration and the performance of old BAC filters for dissolved organic nitrogen (DON) has been poor, requiring replacement and regeneration of the BAC. Therefore, it is necessary to explore a cost-effective way to improve the water quality of the old BAC filters. To address this, low frequency ultrasound is proposed to enhance DON removal efficiency by BAC. In this study, bench and pilot tests were conducted to investigate the effect of low frequency ultrasound on DON removal by 10-year BAC. The results indicated that low frequency ultrasound significantly improved the DON removal rate increased from 15.83 % to 85.87 % and considerably inhibited the nitrogenous disinfection by-products (N-DBPs) formation potential, which was attributed to a decrease in the production of lipid-like, carbohydrate-like, and protein/amino sugar-like DON. The biomass on the BAC was significantly reduced after ultrasound treatment, and it decreased from 349.56∼388.98 nmol P/gBAC to 310.12∼377.63 nmol P/gBAC, enabling the biofilm thickness to decrease and the surface to become sparse and porous, which was conducive to oxygen and nutrients transfer. The Rhizobials associated with microbe-derived DON were stripped away during ultrasound treatment, which reduced microbe-derived DON associated with amino acids. Additionally, ultrasound regulated metabolic pathways, including amino acids, tricarboxylic acid (TCA) cycle, and nucleotide metabolism, to improve the osmotic pressure of the biofilm. In short, low frequency ultrasound treatment can enhance BAC biological properties and effectively remove DON and N-DBPs formation potentials, which provides a viable and promising strategy for improving the safety of drinking water in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.