Abstract

Long-term fertilization has an important effect on soil fertility and soil microbial activity. In order to explore the effects of long-term fertilization on soil extracellular enzyme activities and nutrient characteristics in a terrace on the Loess Plateau, we based our investigation on the long-term nutrient localization plot of Ansai Soil and Water Conservation Experimental Station, Chinese Academy of Sciences. We measured the soil physicochemical properties, microbial biomass, and extracellular enzyme activities of six fertilization treatments, which included no fertilization (CK); manure and nitrogen fertilization (MN); manure and phosphate fertilization (MP); manure, nitrogen, and phosphate fertilization (MNP); manure (M); and nitrogen and phosphate fertilization (NP). The results showed that all fertilization treatments significantly increased soil nutrient content and soil extracellular enzyme activities compared with that in CK. Correlation analysis showed that extracellular enzyme activity and soil physicochemical properties had an extremely significant correlation. The redundancy analysis indicated that soil nutrient and soil microbial biomass could explain 79.66% and 74.87% of the variation in soil extracellular enzyme activity and its stoichiometric ratio, respectively. Thus, the effects of fertilization on soil fertility were primarily through influencing soil extracellular enzyme activities indirectly. M, MN, MP, and MNP significantly improved soil organic carbon (SOC); soil total nitrogen (STN); and carbon (C), nitrogen (N), and phosphorus (P) source enzyme content; however, MNP changed the soil pH, which had an inhibitory effect on microbial activities. Vector analysis showed that the microbial communities of all treatments were in the condition of P limitation. Although MNP could alleviate the extent of P limitation, there was no significant difference between M and MP. Our study indicated that long-term application of manure[7500 kg·(hm2·a)-1]could meet the nutrient requirements of dryland crop growth, and long-term application of manure combined with phosphorus fertilization could alleviate the resource constraints faced by microorganisms. Consequently, our results provide a new insight into improving regional nitrogen excess.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.