Abstract

Anthropogenic nitrogen (N) deposition significantly affects forest soil microbial biomass and extracellular enzymatic activities (EEA). However, the influence of mixed N fertilizations on soil microbial biomass and EEA remains unclear. In this work, NH4NO3 was chosen as inorganic N, while urea and glycine were chosen as organic N. They were used to fertilize subtropical forest soil monthly for 1 year with different ratios (inorganic N : organic N = 10 : 0, 7 : 3, 3 : 7 and 1 : 9 respectively.) and N inputs were equivalent to 7.2 g N m−2 y−1. Soil samples were harvested every 2 months. Subsequently, soil microbial biomass and enzymatic activities were assayed. Multiple regression analysis (MRA) and principle components analysis (PCA) were utilized to illustrate the relationship between soil microbial biomass and EEA. Results showed that soil EEA displayed different changes in response to various mixed N fertilizations. Invertase, cellulase, cellobiohydrolase, alkaline phosphatase, and catalase activities under mixed N fertilization were higher than those of single inorganic N (NH4NO3) fertilization. Polyphenol oxidase activities were depressed after inorganic N fertilization and accelerated after mixed N fertilization. Acid phosphatase activities were accelerated in all N fertilization plots, while the influence of various mixed N fertilizations were not significant. Soil microbial biomass was enhanced by mixed N fertilization, while no significant changes were observed after inorganic N fertilization. The result revealed that although N fertilization may alleviate soil N-limitation, single inorganic N fertilization may disturb the balance of inorganic N and organic N, and depress the increases of soil enzymatic activities and microbial biomass in the end. Soil enzymes activities and microbial biomass showed the highest activities after medium organic N fertilization (inorganic : organic N = 3 : 7), which might be the most suitable N fertilizer for soil microbes. Meanwhile, PCA showed that the alleviation of N-limited reached a maximum after medium organic N fertilization. All results indicated that soil EEA, microbial biomass, and their relationship are all affected by N type and inorganic to organic N ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call