Abstract

Static taping of the ankle or knee joint is a common method of reducing risk of injury by providing mechanical stability. An alternative taping technique employs kinesiology tape, which has the additional benefit of improving functionality by stimulating proprioception. There is substantial disagreement whether kinesiology tape shows significant differences in proprioception and postural stability as compared to rigid/static tape when applied at the lower limb. The current study investigated the effects of kinesiology tape and static tape during a Y Balance Test on center of mass as an indicator for postural stability. Forty-one individuals, free of injury, performed the Y Balance Test under the three conditions; no tape, kinesiology tape, and static tape applied at the lower limb to the quadriceps, triceps surae and ankle joint. All participants completed the Y Balance Test to determine whether any significant differences could be observed using center of mass movement as a surrogate measure for balance and proprioception. The Minkowski-Bouligand and box-counting fractal dimension analyses were used as measures of the dynamic changes in the center of mass whilst undertaking the Y Balance Test. Statistical analyses included the Kruskal Wallis test to allow for non-normally distributed data and a Bonferroni corrected pairwise T-test as a post hoc test to ascertain pairwise differences between the three taping conditions. Significance was set at 0.05. The fractal analyses of the dynamic changes in center of mass showed significant differences between the control and both the static tape and kinesiology tape groups (p = 0.021 and 0.009, respectively). The current study developed a novel measure of dynamic changes in the center of mass during a set movement that indicated real-time processing effects during a balance task associated with the type of taping used to enhance postural stability.

Highlights

  • Proprioception and BalanceProprioception is a sensory modality important in monitoring body position in space, balance and movement (Lephart et al, 1997)

  • The purpose of this study was to investigate the effects of static and kinesiology taping on postural stability during a dynamic movement control test using the Y balance test

  • The principal finding of our study was a significant increase in the fractal dimension for rigid tape vs. no tape, when results were corrected for multiple group comparison

Read more

Summary

Introduction

Proprioception is a sensory modality important in monitoring body position in space, balance and movement (Lephart et al, 1997). The somatosensory, vestibular, and visual systems are all involved in proprioception to retain balance and posture and to enable dynamic movements (Woollacott and Shumway-Cook, 2002). The receptors in the skin, muscles, ligaments, and tendons, as well as vestibular and visual information associated with proprioception, provide input. Fractal Analysis of Movement Dynamics to the central nervous system regarding body position. The effectiveness of either taping method is best analyzed by measuring the degree of postural control during a balance test. Current measures are based on Euclidean geometry such as area covered by postural sway. Non-Euclidean or complexity measures such as fractal analysis are better suited to determine extent of postural sway and taping effectiveness

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call