Abstract

Background: According to dynamical systems theory, an increase in movement variability leads to greater adaptability, which may be related to the number of feedforward and feedback mechanisms associated with movement and postural control. Using Higuchi dimension (HDf) to measure complexity of the signal and Singular Value Decomposition Entropy (SvdEn) to measure the number of attributes required to describe the biosignal, the purpose of this study was to determine the effect of kinesiology and strapping tape on center of pressure dynamics, myoelectric muscle activity, and joint angle during the Y balance test.Method: Forty-one participants between 18 and 34 years of age completed five trials of the Y balance test without tape, with strapping tape (ST), and with kinesiology tape (KT) in a cross-sectional study. The mean and standard errors were calculated for the center of pressure, joint angles, and muscle activities with no tape, ST, and KT. The results were analyzed with a repeated measures ANOVA model (PA < 0.05) fit and followed by Tukey post hoc analysis from the R package with probability set at P < 0.05.Results: SvdEn indicated significantly decreased complexity in the anterior-posterior (p < 0.05) and internal-external rotation (p < 0.001) direction of the ankle, whilst HDf for both ST and KT identified a significant increase in ankle dynamics when compared to no tape (p < 0.0001) in the mediolateral direction. Taping also resulted in a significant difference in gastrocnemius muscle myoelectric muscle activity between ST and KT (p = 0.047).Conclusion: Complexity of ankle joint dynamics increased in the sagittal plane of movement with no significant changes in the possible number of physiological attributes. In contrast, the number of possible physiological attributes contributing to ankle movement was significantly lower in the frontal and transverse planes. Simply adhering tape to the skin is sufficient to influence neurological control and adaptability of movement. In addition, adaptation of ankle joint dynamics to retain postural stability during a Y Balance test is achieved differently depending on the direction of movement.

Highlights

  • Postural control and balance involve coordination between proprioceptive input, individual muscle output, joints, and limbs to provide stability

  • Traditional laboratory measures of postural stability in static positions is not sensitive enough to detect small multiphase kinematic and kinetic changes associated with postural stability nor can these test results be extrapolated to dynamic movement stability (Hrysomallis et al, 2007; Mckeon and Hertel, 2008)

  • Entropy and fractal measures have not been applied to measure kinematic and kinetic responses during a dynamic postural balance test. These measures may be more suitable to identify non-linear, non-stationary effects of taping on postural stability and associated hierarchical sensorimotor adjustments along the neuroaxis during movement (Von Laßberg et al, 2017). This current study investigated the use of Singular Value Decomposition Entropy (SvdEn) and HDf to determine kinematic and kinetic adjustments during the Y Balance Test (YBT) as these measures provide additional non-linear information and are robust for short time series and discern whether applying either kinesiology tape or strapping tape influenced muscle activity, joint angle dynamics, or center of pressure (CoP) as compared to no tape

Read more

Summary

Introduction

Postural control and balance involve coordination between proprioceptive input, individual muscle output, joints, and limbs to provide stability. Traditional laboratory measures of postural stability in static positions is not sensitive enough to detect small multiphase kinematic and kinetic changes associated with postural stability nor can these test results be extrapolated to dynamic movement stability (Hrysomallis et al, 2007; Mckeon and Hertel, 2008). Both the SEBT and YBT are established dynamic postural functional tests. Using Higuchi dimension (HDf) to measure complexity of the signal and Singular Value Decomposition Entropy (SvdEn) to measure the number of attributes required to describe the biosignal, the purpose of this study was to determine the effect of kinesiology and strapping tape on center of pressure dynamics, myoelectric muscle activity, and joint angle during the Y balance test

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call