Abstract

Optical intrinsic signal (OIS) imaging methods were used to record the responses of contralateral SI cortex to 25 Hz ("flutter") and also to 200 Hz ("vibration") stimulation of the skin. Anesthetized cats and squirrel monkeys were subjects. Separate series of experiments were carried out to evaluate the contralateral SI response to continuous, multisecond 25 Hz vs. 200 Hz stimulation (a) at multiple skin sites arranged along the proximal-distal axis of the fore- or hindlimb (Series I); (b) in the presence and absence of a ring placed in firm contact with the skin surrounding the stimulus site (Series II); (c) before and after topical application of local anesthetic to the stimulus site (Series III); and, finally, (c) to continuous 25 Hz or 200 Hz stimulation applied independently, and also concomitantly ("complex waveform stimulation") to the same skin site (Series IV). The principal findings are: (a) the relationship between the SI optical responses to 25 Hz vs. 200 Hz stimulation of a skin site varies systematically with position of the stimulus site on the limb-at a distal site both 25 Hz and 200 Hz stimulation evoke a well-maintained increase in absorbance, and as the stimulus site is shifted proximally on the limb the response to 200 Hz, but not the response to 25 Hz stimulation, converts to a frank decrease in absorbance; (b) placement of a ring about a skin site at which in the absence of a ring 200 Hz stimulation evoked a decrease in SI absorbance converts the response to 200 Hz to one consistent with increased SI RA neuronal activation (i.e., with the ring in place 200 Hz stimulation evokes a change in SI absorbance approximating the response to 25 Hz stimulation); (c) topical local anesthetic preferentially and reversibly decreases the magnitude of the absorbance increase associated with 25 Hz flutter stimulation; and (d) complex waveform stimulation consistently is associated with a smaller increase in absorbance than obtained with same-site 25 Hz stimulation. Collectively, the findings are consistent with the idea that the Pacinian (PC) afferent activity which unavoidably accompanies cutaneous flutter stimulation triggers CNS mechanisms that "funnel" (sharpen) the spatially distributed contralateral SI response to the flutter stimulus. Viewed in this context, the fact that a flutter stimulus unavoidably co-activates RA and PC afferents appears functionally beneficial because the CNS mechanisms activated by PC afferent drive modify the SI response to skin flutter in a manner predicted to enable more accurate perceptual localization than would be possible if the flutter stimulus only activated RA afferents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call