Abstract

Osteoconductive bone-repairing materials with mechanical properties analogous to those of human bone can be prepared through the combination of an osteoconductive ceramic filler with an organic polymer. Osteoconduction is archived from apatite formation on substrates. Previously, we reported that novel osteoconductive spherical particles in a binary CaO-SiO2 system were produced through a sol-gel process as ceramic filler for the fabrication of composites. In this study, we fabricated the composites consisting of polyetheretherketone (PEEK) and 30CaO·70SiO2 (CS) spherical particles and evaluated the effects of heat treatment in the range of 320-360 °C on apatite formation of the composites in a simulated body fluid. The prepared composites of PEEK and CS particles form hydroxyapatite on their surfaces in the simulated body fluid. The induction periods of hydroxyapatite on the composites decreased with increasing the amount of CS particles and decreasing the temperature for heat treatment. The apatite formation was affected by exposure of ceramic filler on the polymer matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call