Abstract

Humidity sensors can be used to monitor body sweat. Here, we studied a humidity sensor that comprised of a graphene layer between two electrodes. The operating principle is that the humidity sensor will respond when vapor reaches the graphene layer from the top. Based on the humidity diffusion, the sensor measures the relative humidity (RH) with different response times. Graphene is a material with high diffusivity and small thickness that can increase the sensitivity of a sensor. Based on the micro electro mechanical systems (MEMS) method, we modeled the humidity sensor using COMSOL Multiphysics® transport of diluted species software. Additionally, we used the concentration values from the simulations to determine the relationship between capacitance and relative humidity. The sensitivity was found to be 3.379 × 10−11 pF/%RH for the 4-layer graphene, 1.210 × 10−14 pF/%RH for the 8-layer graphene, and 3.597 × 10−11 pF/%RH for the 16-layer graphene sensor. The sensitivity of 4-layer graphene with gold sensor is 3.872 × 10−13 pF/%RH which is smaller than 4-layer graphene sensor, and graphene with gold nanoparticles shows better response time than 4-layer graphene sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call