Abstract
Clay membrane hybrid composites were prepared by facile solution-casting of aqueous precursor suspensions of poly(vinyl alcohol) (PVOH) and montmorillonite clay (MMT), then cross-linked by gamma irradiation. The influences of absorbed dose and polymer loading on composite structure and properties were investigated. A moderate amount of PVOH (P4C6) is found to be optimum for fabricating mechanically strong PVOH composites; however, gamma irradiation has a positive influence on strengthening composites only with low PVOH content. Scanning electron microscopy (SEM) observation shows a layered structure from the cross-section of a cryo-fractured surface for all composites, and a comparatively smooth surface. The wide-angle X-ray diffraction (WAXD) characterization shows an intercalated MMT structure with incorporation of PVOH. Cross-linking and the increase of clay content lead to a decreased onset decomposition temperature but an increase in the temperature at the maximum decomposition rate and enhancement o...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have