Abstract

A series of polymer–clay nanocomposite (PCN) materials that consist of poly(vinyl alcohol) (PVA) and layered montmorillonite (MMT) clay are prepared by effectively dispersing the inorganic nanolayers of MMT clay in organic PVA matrix via an in situ free radical polymerization with AIBN as initiator. Organic vinyl acetate monomers are first intercalated into the interlayer regions of organophilic clay hosts and followed by a one-step free radical polymerization. The prepared poly(vinyl acetate)–clay (PVAc–clay) solution are then saponified via direct-hydrolysis with NaOH solution to form PVA–clay nanocomposite materials. The as-synthesized PCN materials are typically characterized by Fourier-Transformation infrared (FTIR) spectroscopy, wide-angle X-ray diffraction and transmission electron microscopy. The molecular weights of poly(vinyl alcohol) (PVA) extracted from polymer-clay nanocomposite (PCN) materials and bulk PVA are determined by gel permeation chromatography (GPC) analysis with THF as eluant. The viscosity property of PCN materials with different feeding amount of MMT clay is studied by an ubbelohode capillary viscometer. The morphological image of as-synthesized materials is studied by scanning electron microscopy (SEM) and optical polarizing microscope (OPM). Effects of the material composition on the thermal stability, mechanical strength, optical clarity of PVA along with a series of PCN materials, in the form of fine powder and free-standing film, are also studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA) and UV–visible transmission spectra, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call