Abstract
The change in electrical characteristics of a-Si:H thin-film transistors (TFTs) was determined in the presence of electrical gate bias stress, gamma radiation, and both simultaneously, simulating the harsh environment of space. Multiple TFTs were tested under each condition, and the current-voltage characteristics were measured. The results show the gate bias stress increasing the threshold voltage (VT) with power law time dependence while the gamma irradiation decreases threshold voltage for all working transistors. When both the irradiation and gate bias stress were applied simultaneously, the VT initially increased with electrical stress and then decreased as the gamma radiation dominated. Changes in effective mobility were also extracted and detailed analysis of the current-voltage characteristics indicated that the gamma radiation creates interface traps and electron-hole pairs whereas the gate stress produces defect states in the amorphous silicon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.