Abstract
Previous studies in Siberian apricot (Prunus sibirica) seed kernel (SASK) have suggested the involvement of abscisic acid (ABA) signaling pathway in oil accumulation. However, there are few reports on the effects of ABA on the metabolism of fatty acids (FA) in seed development. Here, we first evaluated the response of developing SASK to ABA treatment, with a focus on oil content, FA composition, biodiesel properties, lipid compounds and gene expressions. Compared with control samples, the application of exogenous ABA increased the total oil content by 6.55% in mature SASK. The C18:1 content markedly increased in ABA treatment, and conversely C16:0 decreased. Exogenous ABA also improved the biodiesel properties of SASK oil, making it better suited to the specifications of biodiesel standards. Furthermore, the molecular species of phosphatidylcholine (PC), phosphatidic acid (PA), diacylglycerol (DAG) and triacylglycerol (TAG) were detected using lipidomics analysis. The 18:1/18:1 was the main component in PA, PC and DAG, while the main components of 18:1/18:1/18:2, 18:1/18:1/18:3, 18:2/18:2/18:2 and 18:1/18:1/18:1 in TAG. Most lipid species gradually increased with SASK maturity. In addition, the relative contents of TAG-18:1/18:1/18:2 and TAG-18:1/18:1/18:1 in developing SASK increased with the application of exogenous ABA. We also detected elevated gene expression of key genes involved in ABA chemical pathway, which likely affected FA biosynthesis and accumulation. Our results provide insight into the effects of ABA on the oil accumulation in developing SASK, which has direct applications to improving the quality of SASK-derived biodiesel.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have