Abstract
In order to understand better the ways in which cortical excitability is linked to target brain areas, this study describes the effects of focalized high-definition transcranial direct current stimulation (HD-tDCS), and investigates the way in which these effects persisted after the stimulus electrodes were displaced from the target area. We constructed a 3D volume conduction model of an anatomically realistic head that is ideal for HD-tDCS, as well as compartmental models of layer 3 and layer 5 pyramidal neurons. Using extracellular approaches, we observed stimulus-induced electric fields and simulated neuronal responses by combining stimulus-induced potential fields with pyramidal neuronal models coupled with the head model. We found that the stimulus-induced electric fields were focused on the hand-knob when the electrodes were placed directly above the target region; further, the neuronal responses varied, such that the upper parts of the dendrites were hyperpolarized, while the soma and axons were depolarized. The magnitude of the electric fields, as well as the maximum polarizations at each compartment decreased according to the displacement of the electrodes from the target area. Considerable excitability at the target area within the range of 5 mm displacement between electrodes and the target area was shown by means of stimulus-induced electric fields and membrane polarization. In conclusion, using detailed computational approaches, we discovered the ways in which excitability in the target area persisted even with increased distance from the active electrode.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have