Abstract
The present study analyzed the effects of planting density on the development, quality, and gene transcription characte-ristics of Rehmannia glutinosa using 85-5 and J9 as materials with three planting densities of 5 000, 25 000, and 50 000 plants/Mu(1 Mu≈667 m~2). The agronomic characteristics of leaves and tuberous roots, the content of catalpol and acteoside, and the changes of gene expression were determined. The results showed that the leaf size, the diameter of tuberous root, leaf biomass, tuberous root number, and tuberous root biomass per plant at low density were significantly higher than those of medium and high densities. The content of catalpol and acteoside in leaves was higher at high density. The content of catalpol in tuberous roots was higher at low density, and the change trend was similar to that in leaves, while the content of acteoside in tuberous roots was higher at high density. Transcriptome analysis found that about 1/2 of the expansin genes could change regularly in response to density treatment, which was rela-ted to the development of tuberous roots. The change trend of the gene expression of multiple catalytic enzymes involved in the biosynthesis of catalpol and acteoside was consistent with that of their content, which was presumedly involved in the accumulation and regulation of density-responsive medicinal components. Based on the analysis of the development, medicinal components, and gene expression characteristics of R. glutinosa at different densities, this study is expected to provide an important basis for regulating the quality and yield of medicinal materials of R. glutinosa by managing the planting density.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have