Abstract

Wastewater treatment (WWT) is a priority around the world; conventional treatments are not widely used in rural areas owing to the high operating and maintenance costs. In Mexico, for instance, only 40% of wastewater is treated. One sustainable option for WWT is through the use of constructed wetlands (CWs) technology, which may remove pollutants using cells filled with porous material and vegetation that works as a natural filter. Knowing the optimal material and density of plants used per square meter in CWs would allow improving their WWT effect. In this study, the effect of material media (plastic/mineral) and plant density on the removal of organic/inorganic pollutants was evaluated. Low (three plants), medium (six plants) and high (nine plants) densities were compared in a surface area of 0.3 m2 of ornamental plants (Alpinia purpurata, Canna hybrids and Hedychium coronarium) used in polycultures at the mesocosm level of household wetlands, planted on the two different substrates. Regarding the removal of contaminants, no significant differences were found between substrates (p ≥ 0.05), indicating the use of plastic residues (reusable) is an economical option compared to typical mineral materials. However, differences (p = 0.001) in removal of pollutants were found between different plant densities. For both substrates, the high density planted CWs were able to remove COD in a range of 86–90%, PO4-P 22–33%, NH4-N in 84–90%, NO3-N 25–28% and NO2-N 38–42%. At medium density, removals of 79–81%, 26–32, 80–82%, 24–26%, and 39–41%, were observed, whereas in CWs with low density, the detected removals were 65–68%, 20–26%, 79–80%, 24–26% and 31–40%, respectively. These results revealed that higher COD and ammonia were removed at high plant density than at medium or low densities. Other pollutants were removed similarly in all plant densities (22–42%), indicating the necessity of hybrid CWs to increase the elimination of PO4-P, NO3-N and NO2-N. Moreover, high density favored 10 to 20% more the removal of pollutants than other plant densities. In addition, in cells with high density of plants and smaller planting distance, the development of new plant shoots was limited. Thus, it is suggested that the appropriate distance for this type of polyculture plants should be from 40 to 50 cm in expansion to real-scale systems in order to take advantage of the harvesting of species in these and allow species of greater foliage, favoring its growth and new shoots with the appropriate distance to compensate, in the short time, the removal of nutrients.

Highlights

  • Water pollution and low investment in wastewater treatment (WWT) in developing countries results in a high risks for human health and ecosystems [1,2]

  • These are usually the most expensive materials during the construction of Constructed wetlands (CWs) owing to their commercial use in the construction industry and this is a limitation in rural communities with limited economic resources [10]

  • The results found in this study differ from those expected in horizontal flow CWs for the elimination of N-NO3, since anaerobic conditions, a carbon source and denitrifying bacteria favor the elimination of this compound [53]

Read more

Summary

Introduction

Water pollution and low investment in wastewater treatment (WWT) in developing countries results in a high risks for human health and ecosystems [1,2]. This condition creates the obligation to find both economic and ecological alternatives for WWT based on the needs of these regions, located mostly in tropical and inter tropical areas with little attention to such water problem [3,4]. Constructed wetlands (CWs) are a sustainable option to treat wastewater These engineering systems can mimic the functions of natural wetlands through physical, chemical and biological processes [5], where the role of plants and support media or substrates is essential. These are usually the most expensive materials during the construction of CWs owing to their commercial use in the construction industry and this is a limitation in rural communities with limited economic resources [10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call