Abstract
Co-doped ZnO epilayer films were grown by pulsed laser deposition (PLD) on vicinal cut silicon and sapphire substrates. Changes in deposition time were observed as a moderate effect on the quality of the films, and the influence of the thickness on thermoelectric signals from Zn0.9Co0.1O thin films were discussed. The effect of one of the main deposition parameters, the deposition time, on the crystallinity and electron mobility properties of the Zn0.9Co0.1O thin films grown on sapphire was investigated by means of X-ray diffraction (XRD) and laser-induced voltage (LIV) effect. It shown that the XRD rocking curve full-width half-maximun (FWHM) decreased as time increasing, and the LIV signals were observed along the tilting angle of the substrate orientation when the pulsed KrF excimer laser of 248 nm were irradiated on the films. When the films illuminated in pulse lasers, the highest signals occurred in the films with best crystalline quality, and the signals were higher in the films grown on sapphire than those on silicon substrates. It suggested that the electrical resistivity and electron mobility have close relations with not only the crystallinity but also with the interface of the thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.