Abstract
Tilted La1−x Ca x MnO3 (0.1 ≤ x ≤ 0.7) thin films have been grown on vicinal cut LaAlO3 (100) substrate by pulsed laser deposition. The laser-induced voltage effect was studied at room temperature with the KrF excimer laser using as the thermal source. The relationships between Ca doping level and voltage signal, response time and anisotropy Seebeck coefficient were established. The voltage signal and anisotropy Seebeck coefficient increase at first with increasing Ca doping level, reach a maximum at the same Ca content around x = 0.5, and then decrease. The respond time decreases with the Ca concentration increasing, and changes very little after x = 0.5. The figure of merit F m was also the largest at this doping level, indicating a potential good performance of the photodetector devices. The variation of intrinsic structural and transport anisotropy induced by the change of Ca concentration has been proposed to account for the different LIV effects observed in LCMO thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.