Abstract

Focused ion beam (FIB) machining of insulators is a crucial process in the rapid prototyping of nanodevices for optical applications. A conductive material is generally coated on the insulator prior to FIB machining to achieve high fabrication accuracy. In this paper, we report on the effects on machining accuracy of four coating materials: Pt, Ni, Ag, and Co. The dimensional accuracy at channel sidewalls was improved by selecting a coating material that induces charge-carrier generation in a small range. The geometric and electrical characteristics of the FIB-machined surfaces were evaluated to elucidate the association between the fabrication accuracy and the range of charge-carrier distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.