Abstract
Woody perennials in temperate climates develop cold hardiness in the fall (acclimation) and lose cold hardiness in the spring (deacclimation) to survive freezing winter temperatures. Two main factors known to regulate deacclimation responses are dormancy status and temperature. However, the progression of deacclimation responses throughout the dormant period and across a range of temperatures is not well described. More detailed descriptions of dormancy status and temperature, as factors regulating deacclimation, are necessary to understand the timing and magnitude of freeze injury risks for woody perennials in temperate climates. In this study, we modeled deacclimation responses in cold‐climate interspecific hybrid grapevine cultivars throughout the dormant period by integrating chill accumulation and temperature through the concept of deacclimation potential. We evaluated deacclimation and budbreak under multiple temperature treatments and chill unit accumulation levels using differential thermal analysis (DTA) and bud forcing assays. Deacclimation responses increased continuously following logistic trends for both increasing chill unit accumulation and increasing temperature. There are optimal temperatures where deacclimation rates increased but changes in deacclimation rates diminished below and above these temperatures. The cumulative chill unit range where deacclimation potential increased overlapped with the transition from endo‐ to ecodormancy. Therefore, deacclimation potential could provide a quantitative method for describing dormancy transitions that do not rely on the visual evaluation of budbreak. This information provides a more detailed understanding of when and how deacclimation contributes to increased risks by freezing injury. In addition, our descriptions could inform improvements to models predicting cold hardiness, dormancy transitions, and spring phenology.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have