Abstract
Cold hardiness in woody perennials is determined by complex interacting factors: the timing and rate of cold acclimation; the maximum level of cold tolerance attained; the maintenance of cold tolerance during the winter; and the rate of loss of cold tolerance or deacclimation on resumption of spring growth. For highbush blueberry, the degree of winter freezing tolerance and susceptibility to spring frosts have been identified as the most important genetic limitations of current cultivars. Depending on the winter and the location, both winter freezes and spring frosts can cause damage to floral buds or flowers resulting in substantial losses in yield. To identify genotypes that are particularly slow or late to deacclimate and thus may be useful in breeding for spring frost-tolerant cultivars, we compared deacclimation kinetics under controlled laboratory and field conditions among several blueberry genotypes with diverse genetic backgrounds. Clear genotypic differences in timing and rate of deacclimation were found. In the field study, the species Vaccinium constablaei Gray was identified as particularly late to deacclimate, and ‘Little Giant’ (50:50 hybrid of V. constablaei and V. ashei Reade) was nearly as late to deacclimate as 100% V. constablaei. Recently, we extended our cold tolerance measurements from October through midwinter comparing acclimation kinetics and maximum cold tolerance levels among genotypes. Although all genotypes appeared to reach maximum cold tolerance about mid-December under the study conditions, genotypic differences were detected in other aspects, including initial cold tolerance, rate of acclimation, maximum cold tolerance, and length of the plateau. ‘Little Giant’ and ‘Northsky’ (75:25 hybrid of V. corymbosum L. and V. angustifolium Ait.) were very early to acclimate and were hardier than the other genotypes both initially and when maximum cold tolerance was reached. Understanding how cold tolerance levels change throughout the dormant period should help us to develop cultivars better suited to their environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.