Abstract
By 2050, the U.S. beef industry must produce an extra 40 million tons of beef to satisfy the global demand. Such an increase in inventory will undoubtedly enhance methane (CH4) production from livestock, which should be reduced by over 20%. The addition of plant secondary metabolites, such as anacardic acid present in cashew nutshell extract (CNSE), has shown promising results in reducing CH4 yield, although its effects seemed to be diet dependent. This study evaluated the addition of CNSE to a high-grain diet (85:15 Grain: forage) on in vivo CH4 emissions, nutrients digestibility, performance, feeding behavior, and ruminal fermentation parameters of beef steers. Sixteen Angus crossbred steers [599 ± 40kg of bodyweight (BW)] and six ruminally cannulated crossbred steers (490 ± 51kg of BW) were utilized in a crossover design with 2 experimental periods of 56 d each, composed by 14 d of adaptation, 35 d of measurement, and 7 d of washout. Following adaptation, steers were sorted by BW, and assigned to receive no additive (CON) or CNSE at 5g/steer/d. Data were analyzed using the MIXED procedure of SAS. Inclusion of CNSE increased (P < 0.05) propionate concentration and molar proportion (MP; mol/100mol), tended to decrease acetate MP (P = 0.10), reduced the acetate: propionate (A:P) ratio (P = 0.05), and MP of branched chain volatile fatty acids (P < 0.01). Neither in vitro organic matter digestibility nor in vitro CH4 yield were affected by CNSE inclusion (P > 0.05). Steers receiving CNSE exhibited greater (P < 0.05) final BW, dry matter intake (DMI), and average daily gain (ADG) but lesser (P < 0.05) in vivo CH4 emission rate (g/d), yield (g/kg of DMI), and intensity (g/kg of ADG). Meal length, bunk visit duration, and apparent total tract digestibility of DM increased (P < 0.05) after CNSE addition. Considering CNSE-supplemented steers spent more time in the feedbunk and exhibited higher DMI, CH4 mitigation was unlikely associated with intake reduction. The addition of CNSE to a high-grain diet in beef steers demonstrated significant improvements in animal performance and reduced CH4 emissions, as the result of shifts in ruminal fermentation patterns, favoring propionate instead acetate concentration, leading to a reduction in the A:P ratio. CNSE shows promise as a strategy to enhance beef industry sustainability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have