Abstract
Supplementing a diet with nitrate is regarded as an effective and promising methane (CH4) mitigation strategy by competing with methanogens for available hydrogen through its reduction of ammonia in the rumen. Studies have shown major reductions in CH4 emissions with nitrate supplementation, but with large variation in response. The objective of this study was to quantitatively investigate the effect of dietary nitrate on enteric CH4 production and yield and evaluate the variables with high potential to explain the heterogeneity of between-study variability using meta-analytical models. A data set containing 56 treatments from 24 studies was developed to conduct a meta-analysis. Dry matter (DM) intake, nitrate dose (g/kg of DM), animal body weight, roughage proportion of diet, dietary crude protein and neutral detergent fiber content, CH4 measurement technique, and type of cattle (beef or dairy) were considered as explanatory variables. Average DM intake and CH4 production for dairy cows (16.2 ± 2.93 kg/d; 311 ± 58.8 g/d) were much higher than for beef cattle (8.1 ± 1.57 kg/d; 146 ± 50.9 g/d). Therefore, a relative mean difference was calculated and used to conduct random-effect and mixed-effect model analysis to eliminate the large variations between types of animal due to intake. The final mixed-effect model for CH4 production (g of CH4/d) had 3 explanatory variables and included nitrate dose, type of cattle, and DM intake. The final mixed-effect model for CH4 yield (g of CH4/kg of DM intake) had 2 explanatory variables and included nitrate dose and type of cattle. Nitrate effect sizes on CH4 production (dairy: -20.4 ± 1.89%; beef: -10.1 ± 1.52%) and yield (dairy: -15.5 ± 1.15%; beef: -8.95 ± 1.764%) were significantly different between the 2 types of cattle. When data from slow-release nitrate sources were removed from the analysis, there was no significant difference in type of cattle anymore for CH4 production and yield. Nitrate dose enhanced the mitigating effect of nitrate on CH4 production and yield by 0.911 ± 0.1407% and 0.728 ± 0.2034%, respectively, for every 1 g/kg of DM increase from its mean dietary inclusion (16.7 g/kg of DM). An increase of 1 kg of DM/d in DM intake from its mean dietary intake (11.1 kg of DM/d) decreased the effect of nitrate on CH4 production by 0.691 ± 0.2944%. Overall, this meta-analysis demonstrated that nitrate supplementation reduces CH4 production and yield in a dose-dependent manner, and that elevated DM intake decreases the effect of nitrate supplementation on CH4 production. Furthermore, the stronger antimethanogenic effect on CH4 production and yield in dairy cows than in beef steers could be related to use of slow-release nitrate in beef cattle.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have