Abstract

We assessed the effects of background concentrations of calcium (Ca) in solution on rhizotoxicity of copper (Cu) in and the accumulation and translocation of Cu by the grapevine, Vitis vinifera L. var. Kyoho. Grapevine cuttings in a hydroponic system were exposed to Cu-spiked solutions (0, 1, 2.5, 5, 10, and 25 μM) with two Ca backgrounds (0.5 and 5 mM) for 15 days. We found that when Cu exposure exceeded 5 μM, no new white roots were generated from the cuttings. When exposed to a Cu concentration of 25 μM, the lateral roots were sparse, appeared dark and exhibited malformed terminal swellings. The morphological phenomena of root response to an increase in Cu levels were relatively pronounced at a background concentration of 5 mM Ca; epidermal cell walls thickened, cortical cells remained intact and root terminal swelling was enhanced with Cu exposure. A 5 mM Ca background concentration enhanced the reduction in relative root elongation, but alleviated the reduction in relative root dry weight with increased Cu exposure. Moreover, there was a prominent increase in root Cu concentrations with increased Cu exposure, but the increases in leaf Cu concentrations were much less. The Cu profile of Cu exposure in a 5 mM Ca background concentration appeared higher in root, but lower in leaf than the Cu profile in a 0.5 mM Ca background; therefore, increase of Ca background concentrations would enhance Cu to be accumulated by root, but not translocated into the leaf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.