Abstract
Background and Purpose: Black Cumin of Kerman (Bunium persicum) is an Iranian plant that is commonly used as an antispasmodic, carminative, and antimicrobial substance. The present study aimed to assess different components of the essence of B. persicum and its effect on antifungal activity, spore germination inhibition, and expressions of FUM1 and FUM14 genes in Fusarium verticillioides strains.Materials and Methods: The essence was extracted by hydrodistillation and analyzed through gas chromatography-mass spectroscopy. A broth microdilution method was used for the determination of the minimum inhibitory concentration (MIC). In addition, the expression of FUM1 and FUM14 genes of toxigenic F. verticillioides was assessed by using the real-time polymerase chain reaction (RT-PCR) technique.Results: Based on the findings, most of the essence consisted of γ-terpinene (15.56%), propanal, and 2-methyl-3-phenyl (14.18%). The oil showed a good antifungal activity (mean MIC value: 2556.8 μg/ml) as well as the inhibition of spore germination and mycelial growth (P<0.05). The RT-PCR demonstrated that the expression levels of FUM1 and FUM14 of B. persicum-treated F. verticillioides were 0.43 and 0.53 folds lower than the control samples, respectively.Conclusion: These findings revealed that the essential oil of B. persicum has different components responsible for the inhibition of mycelial growth and spore germination of F. verticillioides as well as reduction of expressions of FUM1 and FUM14 genes involving fumonisin production.
Highlights
Background and PurposeBlack Cumin of Kerman (Bunium persicum) is an Iranian plant that is commonly used as an antispasmodic, carminative, and antimicrobial substance
The expression of FUM1 and FUM14 genes of toxigenic F. verticillioides was assessed by using the real-time polymerase chain reaction (RT-PCR) technique
The RT-PCR demonstrated that the expression levels of FUM1 and FUM14 of B. persicum-treated F. verticillioides were 0.43 and 0.53 folds lower than the control samples, respectively
Summary
Background and PurposeBlack Cumin of Kerman (Bunium persicum) is an Iranian plant that is commonly used as an antispasmodic, carminative, and antimicrobial substance. The present study aimed to assess different components of the essence of B. persicum and its effect on antifungal activity, spore germination inhibition, and expressions of FUM1 and FUM14 genes in Fusarium verticillioides strains. The expression of FUM1 and FUM14 genes of toxigenic F. verticillioides was assessed by using the real-time polymerase chain reaction (RT-PCR) technique. The oil showed a good antifungal activity (mean MIC value: 2556.8 μg/ml) as well as the inhibition of spore germination and mycelial growth (P
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.