Abstract

The magnetic, structural, thermal, and magnetocaloric properties of Ni50Mn35In14.5B0.5 melt-spun ribbons have been studied through X-ray diffraction (XRD), differential scanning calorimetry, and magnetization measurements. A comparison of magnetic properties and magnetocaloric effects (MCE) of Ni50Mn35In14.5B0.5 melt-spun and annealed ribbons to its bulk form has been shown in detail. We have observed that a short time vacuum annealing (1073 K-10 min) on ribbon sample can restore the properties of the bulk material. Significant changes in magnetic and magnetocaloric properties have been observed between Ni50Mn35In14.5B0.5 ribbons in the as-solidified state and after thermal annealing. The MCE parameters of annealed ribbons were found to be comparable to those observed in the bulk alloy. The maximum value of relative cooling power of 150 J/kg for a magnetic field change of 5 T was found at the martensitic transition for annealed ribbons. The working temperature range of the magnetic entropy change (ΔSM) for annealed ribbons has been significantly enlarged in comparison to melt-spun ribbons. The role of the magnetic and structural changes on the transition temperatures of the ribbons is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.