Abstract

In this paper, we propose a specific two-layer model consisting of a functionally graded (FG) layer and a piezoelectric semiconductor (PS) layer. Based on the macroscopic theory of PS materials, the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated. The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series. Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer. In addition, by creating jump discontinuities in the material properties of the FG layer, potential barriers/wells can be produced in the middle of the fiber. Similarly, the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way, which offers a new choice for the design of PN junction based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.