Abstract

A PN junction between two types of piezoelectric semiconductors (PSCs) is analyzed based on the fully coupled nonlinear equations of PSCs without any assumptions. A perturbation theory is employed to obtain the analytical solution of the considered nonlinear problem. A general solution to one-dimensional problems for PSCs is represented by a sum of a series of perturbation solutions. Typical properties including the electromechanical fields, built-in potential and the current–voltage characteristics of the piezoelectric PN junction are investigated for conditions of mechanical loading combined with a bias. The results reveal that the simplified linear (i.e., first-order perturbation) solution reported in the literature fails to describe the nonlinear characteristics, such as current–voltage characteristics of the piezoelectric PN junction, although it can give the electromechanical fields as well as concentrations of the electrons and holes near the interface of the PN junction for small carrier concentration perturbations. The presented nonlinear solution is valid and corresponds closely with the numerical solutions based on the commercial software COMSOL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.