Abstract

Preclinical and clinical evidence suggests that anxiolytic effects are observed after chronic administration of the selective serotonin reuptake inhibitor fluoxetine. In contrast, acute treatment may increase signs of anxiety. The present study examined the effects of acute and chronic administration of fluoxetine on a physiological measure of anxiety, stress-induced hyperthermia, in rats and mice using radiotelemetry to record core temperature and locomotor activity and ethologically relevant stressors to evoke the hyperthermic response. In both species, the benzodiazepine agonist chlordiazepoxide reduced stress-induced hyperthermia at doses (5 mg/kg i.p. rat, 10 mg/kg p.o. mouse) that had no significant effect on locomotor activity. Similarly, in both species, chronic (21 days) treatment with fluoxetine attenuated the hyperthermic response without significantly affecting locomotor activity. However, acute fluoxetine elicited species-specific effects. Thus in mice, stress-induced hyperthermia and activity were unaffected by fluoxetine (20 mg/kg p.o.) consistent with a lack of anxiolytic or anxiogenic activity. In contrast, in rats, fluoxetine (10 mg/kg i.p.) caused a significant baseline hypothermia in the absence of stress, confounding further interpretation. In conclusion, stress-induced hyperthermia in mice was unaffected by acute treatment and significantly reduced by chronic treatment with fluoxetine. However, in rats chronic administration of fluoxetine significantly reduced stress-induced hyperthermia while the effects of acute treatment were confounded by a decrease in body temperature in the absence of stress. Together, these observations support the view that chronic administration of fluoxetine is anxiolytic; however, the stress-induced hyperthermia assay does not reveal anxiogenic effects of acute administration of fluoxetine in rats or mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call