Abstract

We studied the effects of physical factors (acoustic impulses of laser-induced hydrodynamics, AILIH, and EHF-radiation) on the formation of heterotopic bone marrow organs. Suspension of precipitated mouse bone marrow cells was exposed to AILIH and EHF or their combinations (AILIH+EHF, EHF+AILIH). The developed tissue engineering constructions (gelatin sponges containing 107 nucleated bone marrow cells exposed to physical factors) were transplanted under the renal capsule of syngeneic mice. Analysis of newly formed hemopoietic organs was performed after 3 and 5 months. The total amount of hemopoietic cells, number of multipotent stromal cells, efficiency of colony formation from these cells, and weight of bone capsule of the transplants were measured. Microscopic study showed that 5-month transplants were significantly larger than 3-month transplants and contained 3-fold more hemopoietic cells (20-fold in the AILIH+EHF group). The number of multipotent stromal cells was maximum in EHF+AILIH group (by 2.2 times higher than in the control) and minimum in AILIH+EHF group. Exposure to EHF+AILIH had most pronounced effect on the formation of the bone marrow transplants. The weight of bone capsules more rapidly increased in gelatin sponges of 3-month transplants of EHF+AILIH and AILIH groups. These data suggest that the studied physical factors can be used for acceleration of rehabilitation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.