Abstract
ABSTRACT This study investigated a novel magnesium carbon micro-electrolysis (Mg-C ME) system for strengthening the removal of phenolic compounds in wastewater. The effects of the Mg/C mass ratio, aeration intensity, initial pH and reaction time on the degradation of three phenolic compounds and the COD removal efficiency in the simulated wastewater were evaluated using one-factor-at-a-time (OFAT) method. The optimum values obtained for the Mg/C mass ratio, aeration intensity, initial pH and reaction time were 3:1, 4.0 L/(L·min), 5.0 and 2.5 h, respectively. The experimental removal rates of catechol, resorcinol, and phenol, under the mentioned conditions, were obtained to be 95.6%, 71.5%, and 48.8%, respectively. Meanwhile, the COD removal rates were 63.8%,44.7%,34.0%, respectively. Moreover, experiments were designed and analyzed based on the box-based designing response surface (BBD-RSM) method. According to the results, the Mg/C mass ratio was the most significant variable showing incremental effect on the removal efficiency of catechol in a way that maximum removal efficiency of catechol was achieved in Mg/C mass ratio of 3.23:1. The validation experiments showed that the maximum removal efficiency of catechol was 96.24% under optimization conditions. Resorcinol degradation characteristics analysis indicated that the Mg-C ME system performed a key function in phenolic compounds elimination. Results showed that the Mg-C ME has a considerable capability in removing the phenolic compounds and COD. Thus, it could be considered as an efficient pretreatment choice for treating phenolic wastewater in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.