Abstract

Far-infrared (FIR) is considered to be an ideal method to promote fatigue recovery due to its high permeability and strong radiation. In this paper, we report a flexible and wearable graphene heating device to help fatigue recovery of human exercise by using its high FIR divergence property. This study compares two different fatigue recovery methods, graphene far-infrared heating device hot application and natural recovery, over a 20 min recovery time among the male colleges' exhaustion exercise. Experimental results show that the achieved graphene device holds excellent electro-thermal radiation conversion efficiency of 70% and normal total emissivity of 89%. Moreover, the graphene FIR therapy in our work is more energy-efficient, easy to use, and wearable than traditional fatigue recovery methods. Such an anti-fatigue strategy offers new opportunities for enlarging potential applications of graphene film in body science, athletic training recovery, and wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.