Abstract
Nowadays, supported sulfide transition-metal-based catalysts (Mo, CoMo and NiMo) are the most used hydrotreating catalysts. However, hydrotreating oxygen compounds derived from biomass means a challenge due to their deactivation by sulfur leaching. The co-processing approach could be a compromise solution, as it was for the hydrotreating of other oxygen compounds, such as triglycerides. The present work reports the use of four types of commercial sulfide catalysts (Mo/Al2O3, NiMo/Al2O3, CoMo/Al2O3 and CoMo/TiO2) for the co-processing of furfural-acetone aldol condensation adducts (FAA: 5–10 wt%) with atmospheric gas oil and isopropanol as co-solvent. The experimental tests were carried out in a fixed bed reactor at industrial operating conditions (T = 320 °C, WHSV = 0.5 h−1, P = 5.5 MPa). The conversion of FAA to alkanes did not significantly affect catalyst hydrodesulfurization and hydrodenitrogenation effectiveness (<1.0%). Moreover, C8 and C13 alkanes from FAA co-processing decreased hydrotreated gas oil density. Overall, our results point to the suitability of commercial sulfide hydrotreating catalysts for upgrading biomass-derived compounds to decarbonize current fuels using the existing refinery units.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have