Abstract

The impact of aluminum (Al) implantation into TiN/HfO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> / SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> on the effective work function is investigated. Al implanted through poly-Si cannot attain sufficient flatband voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FB</sub> ) shift unless at higher implantation energy. Al implanted through TiN at 1.2 keV with a dose of 5 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">15</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> raised the V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FB</sub> to about 250 mV compared with a nonimplanted gate stack. Moreover, the V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FB</sub> shift can be up to about 800 mV at 2 keV with the same dose level accompanied with slightly equivalent oxide thickness penalty and gate leakage current degradation. Optimized process window to control Al diffusion depth was essential to minimize these impacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call