Abstract

Aedes mosquito-borne diseases remain a significant global health threat, necessitating effective control strategies. This study introduces monoterpenes-based nanohydrogels for potential use as repellents against Aedes aegypti, the primary dengue vector worldwide. We formulated hydrogels using cymene- and myrcene-based nanoemulsions with different polymers: chitosan, carboxymethylcellulose (CMC), and carbopol®. Our evaluations of rheological, texture, and bioadhesive properties identified CMC hydrogel as the most promising gelling agent for topical application, exhibiting sustained monoterpene release over 12 h with low skin permeation and high retention in the stratum corneum. Myrcene-loaded CMC hydrogel achieved a 57% feeding deterrence compared to 47% with cymene hydrogel in the mosquito membrane-feeding model. Molecular docking studies revealed interactions between myrcene and an essential amino acid (Ile116) in the Ae. aegypti odorant-binding protein 22 (AeOBP22), corroborating its higher repellent efficacy. These findings suggest that myrcene-loaded CMC hydrogels offer a promising, minimally invasive strategy for personal protection against Ae. aegypti and warrant further investigation to optimize monoterpene concentrations for vector control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.