Abstract
The rising energy demand, coupled with increased integration of distributed energy resources (DERs) and fluctuating renewable generation, underscores the need for effective load management within energy communities. This paper addresses these challenges by implementing effective, constraint-aware load shifting within microgrid-based energy communities. Specifically, the goal of this study is to flatten the electrical load profile of a High-Voltage (HV)/Medium-Voltage (MV) power transformer. The load of a central power transformer includes (a) the diverse, fluctuating electrical and thermal demands of buildings within the energy community and (b) the load of the area supplied by the substation excluding the energy community loads. To achieve a flattened load profile, we apply time shifting to both electrical and heating, ventilation, and air conditioning (HVAC) loads of the energy community, allowing for a redistribution of energy consumption over time. This approach entails shifting non-critical loads, particularly those related to HVAC and other building operations, to off-peak periods. The methodology considers critical operational constraints, such as maintaining occupant thermal comfort, ensuring compliance with building codes, and adhering to technical specifications of HVAC and electrical systems and microgrid organized energy communities. Detailed simulations were conducted to prove the effectiveness of this constraint-aware load-shifting approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have