Abstract

From an examination of the fingerprint sweat corrosion of 40 different individuals on α phase brass, we show that an increase in visualization can be achieved by applying a negative potential to the brass followed by the introduction of a conducting powder. Previously, this technique has been demonstrated only for a positive applied potential and a corrosion product that was dominated by p-type copper (I) oxide. X-ray photoelectron and Auger electron spectroscopic analyses of the surface of the corroded brass show that an increase in visualization with a negative applied potential corresponds with an increase in the concentration of n-type zinc oxide relative to p-type copper (I) oxide with the Cu:Zn ratio <0.8:1. Work function conditions for the formation of an n-type zinc oxide/brass rectifying Schottky barrier are fulfilled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.