Abstract

This research paper examines the damage mechanisms and reductions to the tensile properties of E-glass yarns during weaving of three-dimensional (3D) fabrics for polymer-based composites. The paper also assesses the influence of weaving damage to load-bearing glass yarns on the tensile properties of 3D orthogonal woven composites. It is found that damage occurs to yarns at most stages of the 3D weaving process due to abrasion and breakage caused when sliding against the loom machinery. The abrasion damage causes a large reduction (∼30%) to the tensile strength of the dry woven yarns, although the tensile stiffness remains unaffected. The damage and reduction to the tensile properties of the dry yarns at different weaving stages are described. Tensile studies performed on single yarn/resin composites and larger coupons of 3D orthogonal woven composites reveal that weaving damage is responsible for a significant reduction to the tensile strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call